Imperial County
Transportation Commission

Quality Assurance Program
(QAP)

Originally prepared January 9, 2020

Prepared by:

James G. "Jack" Holt, PE
Consultant Engineer
The Holt Group, Inc.

Recommended for Approval by:

David Aguirre
Transit Program Manager of ICTC

Approved By:

Robert Amaparo
Chairman
Imperial County Transportation Commission
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION AND PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>1.1 DEFINITION OF TERMS</td>
<td>1</td>
</tr>
<tr>
<td>2 MATERIALS LABORATORY</td>
<td>2</td>
</tr>
<tr>
<td>2.1 ACCEPTANCE TESTING (AT)</td>
<td>3</td>
</tr>
<tr>
<td>2.2 INDEPENDENT ASSURANCE PROGRAM (IAP)</td>
<td>3</td>
</tr>
<tr>
<td>2.3 REPORTING ACCEPTANCE TESTING RESULTS</td>
<td>4</td>
</tr>
<tr>
<td>3 TESTING OF MANUFACTURED MATERIALS</td>
<td>6</td>
</tr>
<tr>
<td>4 PROJECT CERTIFICATION</td>
<td>7</td>
</tr>
<tr>
<td>5 RECORDS</td>
<td>8</td>
</tr>
</tbody>
</table>

Exhibits

- Exhibit 1 Appendix D - “Acceptance Sampling and Testing Frequencies” of the QAP Manual
- Exhibit 2 Exhibit 16-V of the LAP Manual
- Exhibit 3 Appendix F - “Construction Materials Accepted by a Certificate of Compliance” of the QAP Manual
- Exhibit 4 Appendix J – “Example of a Vendor’s Certificate of Compliance” of the QAP Manual
- Exhibit 5 Appendix K – “Examples of Materials Certificates/Exceptions” of the QAP Manual
- Exhibit 6 Section 16.3 – “Maintaining Project Records” of the LAP Manual
- Exhibit 7 Appendix H – “Example of a Log Summary Sheet” of the QAP Manual
1 INTRODUCTION AND PURPOSE

The purpose of this program is to provide assurance that the materials incorporated into construction projects are in conformance with the contract specifications. This program will be updated every five years or more frequent if there are changes of the testing frequencies or to the tests themselves. To accomplish this purpose, the following terms and definitions will be used:

1.1 DEFINITION OF TERMS

- **Acceptance Testing (AT)** – Sampling and testing, or inspection, to determine the degree of compliance with contract requirements.
- **ICTC** – Imperial County Transportation Commission
- **Agency** - ICTC
- **Independent Assurance Program (IAP)** – Verification that AT is being performed correctly by qualified testers and laboratories.
- **Quality Assurance Program (QAP)** – A sampling and testing program that will provide assurance that the materials and workmanship incorporated into the construction project are in conformance with the contract specifications. The main elements of a QAP are the AT, and IAP.
- **Source Inspection** – AT of manufactured and prefabricated materials at locations other than the job site, generally at the manufactured location.
- **ASTM** - American Society for Testing of Materials
- **AASHTO** – American Association of State Highway & Transportation Officials
- **QAP Manual** – Quality Assurance Program (QAP) Manual for Use by Local Agencies dated December 2008, developed by the California Department of Transportation Division of Local Assistance
2 MATERIALS LABORATORY

The Imperial County Transportation Commission (ICTC) will use a private consultant materials laboratory to perform AT on Federal-aid and other designated projects. The materials laboratory shall be under the responsible management of a California registered Engineer with experience in sampling, inspection and testing of construction materials. The Engineer shall certify the results of all tests performed by laboratory personnel under the Engineer’s supervision. The materials laboratory shall contain certified test equipment capable of performing the tests conforming to the provisions of this QAP.

The materials laboratory used shall provide documentation that the laboratory complies with the following procedures:

1. **Correlation Testing Program** – The materials laboratory shall be a participant in one or more of the following testing programs:

 a. AASHTO Materials Reference Laboratory (AMRL)
 b. Cement and Concrete Reference Laboratory (CCRL)
 c. Caltrans’ Reference Samples Program (RSP)

2. **Certification of Personnel** – The materials laboratory shall employ personnel who are certified by one or more of the following:

 a. Caltrans District Materials Engineer
 b. Nationally recognized non-Caltrans organizations such as the American Concrete Institute, Asphalt Institute, National Institute for Certification in Engineering Technologies, etc.
 c. Other recognized organizations approved by the State of California and/or Recognized by local governments or private associations.
3. **Laboratory and Testing Equipment** — The materials laboratory shall only use laboratory and testing equipment that is in good working order. All such equipment shall be calibrated at least once each year. All testing equipment must be calibrated by impartial means using devices of accuracy traceable to the National Institute of Standards and Technology. A decal shall be firmly affixed to each piece of equipment showing the date of the last calibration. All testing equipment calibration decals shall be checked as part of the IAP.

2.1 ACCEPTANCE TESTING (AT)

AT will be performed by a materials laboratory certified to perform the required tests. The tests results will be used to ensure that all materials incorporated into the project are in compliance with the contract specifications.

Testing methods will be in accordance with the California Testing (CT) Methods or a national recognized standard (i.e., AASHTO, ASTM, etc.) as specified in the contract specifications.

Sample locations and frequencies may be in accordance with the contract specifications. If not so specified in the contract specifications, samples shall be taken at the locations and frequencies as shown in Exhibit 1 (Appendix D, “Acceptance Sampling and Testing Frequencies” of the QAP Manual).

2.2 INDEPENDENT ASSURANCE PROGRAM (IAP)

IAP shall be provided by personnel from Caltrans, ICTC’S certified materials laboratory or consultant’s certified materials laboratory. IAP will be used to verify that sampling and testing procedures are being performed properly and that all testing equipment is in good condition and properly calibrated.

IAP personnel shall be certified in all required testing procedures, as part of IAP, and shall not be involved in any aspect of AT.

IAP shall be performed on every type of materials test required for the project. Proficiency tests shall be performed on Sieve Analysis, Sand Equivalent, and Cleanness Value tests. All other types of IAP shall be witness tests.
Poor correlation between acceptance tester’s results and other test results may indicate probable deficiencies with the acceptance sampling and testing procedures. In cases of unresolved discrepancies, a complete review of AT shall be performed by IAP personnel, or an independent materials laboratory chosen by the ICTC. IAP samples and tests are not to be used for determining compliance with contract requirements. Compliance with contract requirements is determined only by AT.

2.3 REPORTING ACCEPTANCE TESTING RESULTS

The following are time periods for reporting material test results to the Resident Engineer:

1. When the aggregate is sampled at material plants, test results for Sieve Analysis, Sand Equivalent and Cleanliness Value should be submitted to the Resident Engineer within 24 hours after sampling.

2. When materials are sampled at the job site, test results for compaction and maximum density should be submitted to the Resident Engineer within 24 hours after sampling.

3. When soils and aggregates are sampled at the job site:

 a. Test results for Sieve Analysis, Sand Equivalent and Cleanliness Value should be submitted to the Resident Engineer within 72 hours after sampling.

 b. Test results for “R” Value and asphalt concrete extraction should be submitted to the Resident Engineer within 96 hours after sampling.

4. When sampling products such as Portland Cement Concrete (PCC), cement-treated base (CTB), hot mix asphalt (HMA), and other such materials; the time of such sampling shall be varied with respect to the time of the day insofar as possible, in order to avoid a predictable sampling routine. The reporting of AT results, if not performed by the Resident Engineer’s staff, shall be done on an expedited basis such as by fax or telephone.
3 TESTING OF MANUFACTURED MATERIALS

During the Design phase of the project, the Project Engineer may submit a “Source Inspection Request” see Exhibit 2 (Exhibit 16-V of the LAPM) to the consultant, or Caltrans for inspection and testing of manufactured and prefabricated materials by their materials laboratory. A list of materials that can be typically accepted on the basis of certificates of compliance during construction is found in Exhibit 3 (Appendix F – “Construction Materials Accepted by a Certificate of Compliance” of the QAP Manual). All certificates of compliance shall conform to the requirements of the contract specifications, for examples see Exhibit 4 (Appendix J – “Example of a Vendor’s Certificate of compliance” of the QAP Manual).

Should ICTC request Caltrans to conduct the source inspection, and the request is accepted, all sampling, testing, and acceptance of manufactured and prefabricated materials will be performed by Caltrans’ Office of Materials Engineering and Testing Services.

For Federal-aid projects on the National Highway System (NHS), Caltrans will assist in certifying the materials laboratory, and the acceptance samplers and testers. For Federal-aid projects off the NHS, Caltrans may be able to assist in certifying the materials laboratory, and the acceptance samplers and testers.
Upon completion of a Federal-aid project, a “Materials Certificate” shall be completed by the Resident Engineer. ICTC shall include a “Materials Certificate” in the Report of Expenditures submitted to the Caltrans District Director, Attention: District Local Assistance Engineer. A copy of the “Materials Certificate” shall also be included in the Agency’s construction records. The Resident Engineer in charge of the construction function for the Agency shall sign the certificate. All materials incorporated into the work which did not conform to specifications must be explained and justified on the “Materials Certification”, including changes by virtue of contract change orders. See Exhibit 5 (Appendix K – “Example of Materials Certificates/Exceptions” of the QAP Manual).
5 RECORDS

All material records of samples and tests, material releases and certificates of compliance for the construction project shall be incorporated into the Resident Engineer's project file. If a Federal-aid project:

1. The files shall be organized as described in Exhibit 6 (Section 16.3 "Maintaining Project Records" of the Local Assistance Procedures Manual).

2. It is recommended that the complete project file be available at a single location for inspection by Caltrans and Federal Highway Administration (FHWA) personnel.

3. The project files shall be available for at least three years following the date of final project voucher.

4. The use of a "Log Summary," as shown in Exhibit 7 (Appendix H — "Example of a Log Summary Sheet" of the QAP Manual), facilitates reviews of material sampling and testing by Caltrans and FHWA, and assists the Resident Engineer in tracking the frequency of testing.

When two or more projects are being furnished identical materials simultaneously from the same plant, it is not necessary to take separate samples or perform separate tests for each project; however, copies of the test reports are to be provided for each of the projects to complete the records.
EXHIBIT 1

Appendix D - “Acceptance Sampling and Testing Frequencies” of the QAP Manual
Appendix D - Acceptance Sampling and Testing Frequencies

Note: It may be desirable to sample and store some materials. If warranted, testing can be performed at a later date.

Portland Cement (Hydraulic Cement)

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement/fly ash (Sampling only)</td>
<td>8-lb. sample</td>
<td>If possible, take a least one sample per job, even if the material is accepted based on a Certificate of Compliance.</td>
<td>ASTM D75, C494, CT 125, AASHTO T127, M85, M295</td>
<td>Standard for sampling hydraulic cement or fly ash.</td>
</tr>
<tr>
<td>Cement (Testing Only)</td>
<td>8-lb. sample</td>
<td>If the product is accepted based on a Certificate of Compliance, testing is not required. If the product is not accepted using a Certificate of Compliance, test at least once per job.</td>
<td>ASTM C109, CT 515, AASHTO T106</td>
<td>If testing appears warranted, fabricate six 2-in. mortar cubes using the Portland (or hydraulic cement). Test for compressive strength.</td>
</tr>
</tbody>
</table>

Portland Cement Concrete (Hydraulic Cement Concrete)

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate for Hydraulic Cement Concrete (Sampling & Testing)</td>
<td>50-lb. sample</td>
<td>Take one aggregate sample for each 1000 cu. yd. of PCC/HCC concrete. Test at least one sample per job.</td>
<td>ASTM D75, CT 125, AASHTO M6, T2, M80</td>
<td>Sample aggregate from belt or hopper (random basis).</td>
</tr>
<tr>
<td>Water (Sampling & Testing)</td>
<td></td>
<td>If the water is clean with no record of chlorides or sulfates greater than 1%, no testing is required. If the water is dirty do not use it. Test only when the chloride or sulfates are suspected to be greater than 1%.</td>
<td>CT 405, CT 422, CT 417, AASHTO R23</td>
<td>If testing appears warranted, test for chlorides and sulfates.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

Portland Cement Concrete (Hydraulic Cement Concrete) – Continued

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description of Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Entraining Admixtures</td>
<td>Take a one-quart sample using a clean, lined can or plastic bottle, if liquid. If powder, take a 2.5 lb. sample.</td>
<td>If the product is accepted based on a Certificate of Compliance, testing is not required. Take one sample per job. Prior to sampling, check with Caltrans (METS) for acceptable brands and dosage rates.</td>
<td>ASTM C233, AASHTO M154, T157, C260</td>
<td>If testing appears warranted, test for sulfates and chlorides. Admixtures with sulfates and chlorides greater than 1% should not be used.</td>
</tr>
<tr>
<td>Water Reducers or Retarders</td>
<td>If liquid, take a 1-qt. sample using a clean plastic can. If powder, take a 2.5 lb. sample.</td>
<td>If the product is accepted based on a Certificate of Compliance, no testing is required. If not, test once per job. Prior to using this product, please check with Caltrans (METS) for acceptable brands and dosage rates.</td>
<td>ASTM C494, AASHTO M194</td>
<td>If testing appears warranted, test for sulfates and chlorides. Admixtures with sulfates and chlorides greater than 1% should not be used.</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Sampling)</td>
<td>Approx. 150lb. (or 1 cu. ft.) near mixer discharge.</td>
<td>When tests are required, take at least one sample for each 500 to 1000 cu. yd. of PCC/HCC.</td>
<td>ASTM C172, C685, CT 539, AASHTO T141, M157</td>
<td>This describes a method to sample freshly-mixed concrete.</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approx. 150 lb/ (or 1 cu. ft.) near mixer discharge.</td>
<td>On projects with 500 cu. yd., or more, test at least one sample per job.</td>
<td>ASTM C143, AASHTO T119</td>
<td>This test determines the slump of the freshly-mixed concrete.</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approx. 150 lb/ (or 1 cu. ft.) near mixer discharge.</td>
<td>On projects with 500 cu. yd., or more, test at least one sample per job.</td>
<td>ASTM C360, CT 533</td>
<td>This test determines the ball penetration of the freshly-mixed concrete.</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approx. 150 lb/ (or 1 cu. ft.) near mixer discharge.</td>
<td>On projects with 500 cu. yd., or more, test at least one sample per job.</td>
<td>ASTM C231, CT 504, AASHTO T152</td>
<td>This test determines the air content of freshly-mixed concrete (pressure method).</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approx. 150 lb/ (or 1 cu. ft.) near mixer discharge.</td>
<td>On projects with 500 cu. yd., or more, test at least one sample per job.</td>
<td>ASTM C138, CT 518, AASHTO T121</td>
<td>This test determines the unit weight of freshly mixed concrete.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

Portland Cement Concrete (Hydraulic Cement Concrete) – Continued

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approx. 150 lb/ (or 1 cu. ft.) near mixer discharge</td>
<td>Fabricate at least two concrete cylinders per project. Test for compressive strength at least once for each 500 to 1,000 cu. yd. of structural concrete.</td>
<td>ASTM C39 CT 521 AASHTO T22</td>
<td>This test is used to fabricate 6" x 12" concrete cylinders. Compressive strengths are determined, when needed.</td>
</tr>
<tr>
<td>Freshly-Mixed Concrete (Testing)</td>
<td>Approximately 210 lb. of concrete are needed to fabricate three concrete beams.</td>
<td>One sample set for every 500 to 1,000 cu. yd. of concrete.</td>
<td>ASTM C78 CT 31 AASHTO T97 & T23</td>
<td>This test is used to determine the flexural strength of simple concrete beams in third-point loading</td>
</tr>
</tbody>
</table>

Soils and Aggregates

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate (Sampling)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D75 CT 125 AASHTO T2</td>
<td>This test describes the procedures to sample aggregate from the belt or hopper (random basis).</td>
</tr>
<tr>
<td>Fine Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM C128 CT 208 AASHTO T84</td>
<td>This test determines the apparent specific gravity of fine aggregates for bituminous mixes, cement treated bases and aggregate bases.</td>
</tr>
<tr>
<td>Fine Aggregate (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM C128 CT 207 AASHTO T84</td>
<td>This test determines the bulk specific gravity (SSD) and the absorption of material passing the No. 4 sieve.</td>
</tr>
<tr>
<td>Coarse Aggregate (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>CT 206</td>
<td>This test determines the cleanliness of coarse aggregate.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM C127 CT 227 AASHTO T85</td>
<td>This test determines the specific gravity and absorption of coarse aggregate (material retained on the No. 4 sieve).</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM C136 CT 202 AASHTO T27</td>
<td>This test determines the gradation of soils and aggregates by sieve analysis.</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D2419 CT 217 AASHTO T176</td>
<td>This test determines the Sand Equivalent of soils and aggregates.</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM C117 AASHTO T11</td>
<td>This test determines the gradation for materials finer than the No. 200 sieve (by washing method).</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D3744 CT 229 AASHTO T210</td>
<td>This test determines the Durability Index of soils and aggregates.</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One 50-lb. sample</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D2844 CT 301 AASHTO T190</td>
<td>This test determines the Resistance Value (R-) and expansion pressure of compacted materials.</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One random location for every 2,500 sq. ft.</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D2922 CT 231 AASHTO T238</td>
<td>This test determines field densities using the nuclear gage.</td>
</tr>
<tr>
<td>Soils and Aggregates (Testing)</td>
<td>One random location for every 2,500 sq. ft.</td>
<td>Take one sample for every 500 to 1,000 tons of materials. Test at least one sample per project.</td>
<td>ASTM D3017 CT 231 AASHTO T239</td>
<td>This test determines the water content using the nuclear gage.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
</table>
| Asphalt Binder (Sampling) | One 0.5-gal. sample placed in a clean, sealed can. | Sample once per job at the asphalt concrete plant. | CT 125
ASTM D 979
AASHTO T 168, T48 | This procedure describes the proper method to sample the asphalt binder. |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Sample once per job at the asphalt concrete plant. | ASTM D92, D117
AASHTO T 48 | This test determines the flash point of the asphalt binder (by Cleveland open cup). |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D2872 &
D92
CT 346
AASHTO T240 &T48 | This test determines the rolling thin-film oven test (RTFO). |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D2042
AASHTO T44 | This test determines the solubility of asphalt material in trichloroethylene. |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D2171
AASHTO T202 | This test determines the dynamic viscosity, (absolute viscosity of asphalt @ 140 degrees F by the Vacuum Capillary Viscometer Poises). |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D5
AASHTO T49 | This test determines the penetration of bituminous material @ 77 degrees F and percentage of original penetration from the residue. |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D113
AASHTO T51 | This test determines the ductility of asphalt @ 77 degrees F. |
| Asphalt Binder (Testing) | One 0.5-gal. sample placed in a clean, sealed can. | Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed. | ASTM D2170
AASHTO T201 | This test determines the kinematic viscosity of asphalt @275 degrees F (Centistoke). |
Appendix D (continued)

Asphalt Binder - Continued

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D2171, AASHTO T202</td>
<td>This test determines the dynamic viscosity. (absolute viscosity of asphalt @ 140 degrees F by the Vacuum Capillary Viscometer Poises).</td>
</tr>
<tr>
<td>Asphalt Binder (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D36, AASHTO T53</td>
<td>This test determines the softening point of asphalt.</td>
</tr>
</tbody>
</table>

Asphalt Emulsified

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsified Asphalt (Sampling)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D140, D979, CT 125, AASHTO T 40, T168</td>
<td>This test describes the procedure to sample the emulsified asphalt.</td>
</tr>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D244, AASHTO T59</td>
<td>This test determines the sieve retention of emulsified asphalt.</td>
</tr>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D244, AASHTO T59</td>
<td>This test determines the weight per gallon of emulsified asphalt.</td>
</tr>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D244, AASHTO T59</td>
<td>This test determines the penetration of the emulsified asphalt.</td>
</tr>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D244, CT 330, AASHTO T59</td>
<td>This test determines the residue @ 325 degrees F evaporation of emulsified asphalt.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

Asphalt Emulsified - Continued

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D4402 AASHTO T201</td>
<td>This test determines the Brookfield viscosity.</td>
</tr>
<tr>
<td>Emulsified Asphalt (Testing)</td>
<td>One 0.5-gal. sample placed in a clean, sealed can.</td>
<td>Obtain one sample at the asphalt concrete plant for each 1,000 tons of asphalt concrete placed.</td>
<td>ASTM D88 AASHTO T72</td>
<td>This test determines the Saybolt-Furol viscosity of emulsified asphalt @ 77 degrees F (seconds).</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt (Asphalt Concrete) – Concrete

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Concrete (Sampling)</td>
<td>Obtain one 30-lb. sample each day of production</td>
<td>Obtain one sample at the asphalt concrete plant for each 5,000 tons of asphalt concrete placed.</td>
<td>ASTM D75, D140, D979, CT 125 AASHTO T 40, T168</td>
<td>This test describes the procedure to sample the asphalt concrete.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>4” x 8” cores</td>
<td>Take one 4” x 8” core for every 500 ft of paved roadway.</td>
<td>ASTM D1188, D1560, D1561, D5361 CT 304 AASHTO T246, T247</td>
<td>This test determines the field density of street samples.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>Obtain one 30-lb. sample for each day of production</td>
<td>Obtain one sample for every five cores taken.</td>
<td>ASTM D1188, D1560, D1561, D5361 CT 304 AASHTO T246, T247</td>
<td>This test determines the laboratory density and relative compaction of asphalt concrete.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>4” x 8” cores</td>
<td>Obtain one sample for every five cores taken.</td>
<td>ASTM D2726, D1188, D5361</td>
<td>This test determines the specific gravity of compacted bituminous mixture dense-graded or non-absorptive.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

Hot Mix Asphalt (Asphalt Concrete) – Continued

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>One 30-lb sample</td>
<td>Obtain one sample for every 1,000 tons of asphalt concrete.</td>
<td>ASTM D1559, AASHTO T245</td>
<td>This test determines the resistance to plastic flow of prepared mixes as determined by the Marshall Method.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>One 30-lb sample</td>
<td>Obtain one sample for every 1,000 tons of asphalt concrete.</td>
<td>ASTM C117, D2172 (use Method B) AASHTO T164</td>
<td>This test determines the screen analysis of aggregates recovered from asphalt materials.</td>
</tr>
<tr>
<td>Geotextile Fabric (Placed Under the Asphalt Concrete) (Testing)</td>
<td>One 12 ft. x 3 ft. sample</td>
<td>Obtain one sample per job.</td>
<td>ASTM D4632, AASHTO M288</td>
<td>This test determines the weight per sq. yd. and grabs strength of geotextile fabrics.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>Sample any test location (random basis)</td>
<td>Obtain one sample for every 1,000 tons of asphalt concrete.</td>
<td>ASTM D2950, CT 375</td>
<td>This test determines the nuclear field density of in-place asphalt concrete.</td>
</tr>
<tr>
<td>Asphalt Concrete (Testing)</td>
<td>One 10-lb sample</td>
<td>Obtain one sample during every day of production.</td>
<td>ASTM D1560, D1561 CT 366 AASHTO T246, T247</td>
<td>This test determines the stability value of asphalt concrete.</td>
</tr>
<tr>
<td>Slurry Seals (Sample)</td>
<td>One 0.5 gal. sample in a clean, dry plastic container.</td>
<td>Obtain one sample per truck</td>
<td>ASTM D979, CT 125 AASHTO T 40, T168</td>
<td>This test describes the procedure for sampling the slurry seal.</td>
</tr>
<tr>
<td>Aggregate for Slurry Seals (Testing)</td>
<td>One 30-lb. sample.</td>
<td>Obtain at least one sample per project from the belt or hopper or stockpile and test for Sand Equivalent</td>
<td>ASTM D2419, CT 217 AASHTO T176</td>
<td>This test determines the Sand Equivalent of aggregates.</td>
</tr>
</tbody>
</table>
Appendix D (continued)

Slurry Seals

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate for Slurry Seals (Testing)</td>
<td>One 30-lb. sample.</td>
<td>Obtain at least one sample per project from the belt, hopper, or stockpile and test for sieve analysis of fine sand.</td>
<td>ASTM C117, AASHTO T11</td>
<td>This test determines the sieve analysis of fine sand (gradation of materials finer than No. 200 sieve by wash grading).</td>
</tr>
<tr>
<td>Slurry Seals (Testing)</td>
<td>One 0.5 gal. sample in a clean, dry plastic container.</td>
<td>Test one sample per project and test for Abrasion.</td>
<td>ASTM D3910</td>
<td>This test determines the Wet Track Abrasion Test (2) (WTAT).</td>
</tr>
</tbody>
</table>

Steel

<table>
<thead>
<tr>
<th>Materials to be Sampled or Tested</th>
<th>Sample Size</th>
<th>Sampling/Testing Frequency</th>
<th>Typical Test Methods</th>
<th>Description or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Strand (Testing)</td>
<td>Sample strand at various sizes.</td>
<td>This item may be accepted using a Certificate of Compliance. Sample and test at least two steel strands per job when a Certificate of Compliance is not used.</td>
<td>ASTM A370, A416, E328, AASHTO T244</td>
<td>This test determines the tensile strength of uncoated seven-wire stress-relieved strand for prestressed concrete.</td>
</tr>
<tr>
<td>Steel Rebar (Testing)</td>
<td>Sample rebar at various sizes.</td>
<td>This item may be accepted using a Certificate of Compliance. Sample and test at least two steel rebar per job when a Certificate of Compliance is not used.</td>
<td>ASTM A615, A370, AASHTO T244</td>
<td>This test determines the steel reinforcement bar tensile strength and bend capability.</td>
</tr>
</tbody>
</table>
EXHIBIT 2

Exhibit 16-V of the LAP Manual
SAMPLE COVER MEMO SOURCE
INSPECTION REQUEST FROM
LOCAL AGENCY TO
CALTRANS' DISTRICT LOCAL ASSISTANCE ENGINEER
(Prepared By Applicant On Applicant Letterhead)

To: (DLAE name) Date: _____________
 Caltrans' District Local Assistance Engineer
 Caltrans' Local Assistance Office
 (District office Address)

Federal-aid Project Number: (if one has been assigned)
Project Description
Project Location:

Subject: (Source Inspection for Project Name, County)

We are requesting that Caltrans provide Source Inspection (reimbursed) services for the above mentioned project. We understand we are responsible for paying for this service provided for by the State. Listed below are the materials for which we are requesting Caltrans' Source Inspection (reimbursed) services.

Materials that will require source inspection:

Justification for request: (Based on the requirements in Section 16.14 under "Source Inspection")

Any question you might have about the above materials should be directed
to: ________________________________, at (phone #) ____________________

Approved:

(Applicant Representative Name) (DLAE name)
District Local Assistance Engineer

(Title) (Date)

(Local agency, name & address)
EXHIBIT 3

Appendix F - "Construction Materials Accepted by a Certificate of Compliance"
of the QAP Manual
Appendix F - Construction Materials Accepted by a Certificate of Compliance *

Soil Amendment
Fiber
Mulch
Stabilizing Emulsion
Plastic Pipe
Lime
Reinforcing Steel
Structural Timber and Lumber
Treated Timber and Lumber
Timber and Lumber
Culvert and Drainage Pipe Joints
Reinforced Concrete Pipe
Corrugated Steel Pipe and Corrugated Steel Pipe Arches
Structural Metal Plate Pipe Arches and Pipe Arches
Perforated Steel Pipe
Polyvinyl Chloride Pipe and Polyethylene Tubing
Steel Entrance Tapers, Pipe Down drains, Reducers, Coupling Bands and Slip Joints
Aluminum Pipe (Entrance Tapers, Arches, Pipe Down drains, Reducers, Coupling Bands and Slip Joints)
Metal Target Plates
Electrical Conductors
Portland Cement
Minor Concrete
Waterstop

* If Caltrans Standard Specifications May 2006 is part of contract specifications.

Note: Usually these items are inspected at the site of manufacture or fabrication and reinspected after delivery to the job site.
EXHIBIT 4

Appendix J – “Example of a Vendor’s Certificate of Compliance” of the QAP Manual
Appendix J.1 - Example of a Vendor's Certificate of Compliance

| STATE OF CALIFORNIA - DEPARTMENT OF TRANSPORTATION |
| VENDOR'S CERTIFICATE OF COMPLIANCE |
| MR-0543 (REV. 5/03) KCT-7561-0000-3 |

- **Contract Number:** [Blank]
- **Manufacturer:** POZZ.
- **Class:** A
- **List of Products to Which Certificate Applies:** Portland cement, fly ash, water reducer

Manufacturer and Authorized Representative:
- **A.E.B. Ready Mix**
- **Authorized Representative's Signature:**

Delivery Date: 77707
Dates of Fabrication: [Blank]
Location: [Blank]
Chemical Admixture: [Blank]
Mineral Admixture: [Blank]

No. 583408

Pre-cast Concrete Products

- **Vendor:** BILL SYNDER
- **City of Flatland**

Contract Number: [Blank]
Plant Location: MIDLAND, CALIFORNIA
Cement Brand: XYZ CEMENT CO.
Type: II MODIFIED

Chemical Admixture:
- **Type:** [Blank]
- **Manufacturer:** XYZ SUPPLIER

Mineral Admixture:
- **Type:** [Blank]
- **Manufacturer:** [Blank]

Manufacturer: [Blank]
Authorized Representative: [Blank]
Appendix J.2 - Example of a Certificate of Compliance for Portland Cement (continued)

This is to certify that the

Portland Cement

Supplied by ABC Cement Company complies with all requirements for Type II Portland Cement when tested in accordance with ASTM C - 494.

Local Agency Project No. HP21L – 5055 – 111

Albert Howakowa
Quality Assurance Engineer
ABC Cement Company

Date: 07/07/07
EXHIBIT 5

Appendix K – "Examples of Materials Certificates/Exceptions" of the QAP Manual
Appendix K - Examples of Materials Certificates/Exceptions
(Signed by the Resident Engineer at the Completion of the Project)

Federal-aid Project No.: Project HP21L - 5055 - 111

Subject: Materials Certification

This is to certify that the results of the tests on acceptance samples indicate that the materials incorporated in the construction work and the construction operations controlled by sampling and testing were in conformity with the approved plans and specifications.

☑ All materials exceptions to the plans and specifications on this project are noted below.

No exceptions were found to the plans and specifications on this project.

Bill Sanders
Resident Engineer (Print Name)

Bill Sanders
Resident Engineer (Signature)

7/7/07
(Date)

Note: The signed original of this certificate is placed in the Resident Engineer’s project files and one copy is mailed to the DLAE and filed under “Report of Expenditures.”

See the attachment (next page)
Appendix K (continued)

Attachments: Materials Exceptions (Acceptance Testing)

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Description of Work</th>
<th>Total Tests Performed On the Project</th>
<th>Number of Failed Tests</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slump Test</td>
<td>Concrete Sidewalk</td>
<td>8</td>
<td>1</td>
<td>When the measured slump exceeded the maximum limit, the entire concrete load was rejected.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>Aggregate for Structural Concrete</td>
<td>10</td>
<td>1</td>
<td>The tested S.E. was 70 and the contract compliance specification was 71 minimum. However, the concrete 28-day compressive strength was 4800 psi. The concrete was considered adequate and no materials deductions were taken.</td>
</tr>
<tr>
<td>Compaction</td>
<td>Sub grade Material</td>
<td>12</td>
<td>1</td>
<td>One failed test was noted. The failed area was watered and reworked. When this was completed, a retest was performed. The retest was acceptable.</td>
</tr>
<tr>
<td>Compaction</td>
<td>Hot Mix Asphalt</td>
<td>12</td>
<td>1</td>
<td>One failed area was noted. It was reworked and retested. The second test met specifications.</td>
</tr>
</tbody>
</table>

Bill Sanders
Resident Engineer (Print Name)

Bill Sanders
Resident Engineer (Signature)

July 4, 2007
Date
EXHIBIT 6

Section 16.3 – “Maintaining Project Records” of the LAP Manual
but not limited to, construction surveys, soils and foundation tests, measurement and computation of quantities, testing of construction materials, checking shop drawings, and preparation of progress payments and reports. Additional RE responsibilities include the preparation of “As-Built” drawings, filing of documentation, and other inspection and staff services necessary to assure that the construction is being performed in accordance with the project plans and specifications, state and federal laws, and with this manual. For projects with structures, a structures representative may be necessary. The LPA may employ a consultant to provide construction engineering services such as RE’s, inspectors, lab testers or surveyors, however, the LPA must provide a full-time public employee to be the person who is in responsible charge.

Document the Project Staff

List the names, titles and contact number of all staff (Agency and consultants hired by the agency) assigned to the project performing contract administration duties, including engineers, inspectors, lab testers, office help or others. This list should not include any contractors’ staff or consultants hired by the prime contractor. Place a copy in the project files. This documentation is essential for auditors to determine the adequacy of the LPA’s staffing.

Obtain the Designation of the Contractor’s Authorized Representative

Prime contractors, including those operating in joint venture, must be required by the project specifications to designate in writing a person authorized to supervise the work and to act for the contractor on the project. The representative must be present at the jobsite while work is in progress. Both the Caltrans Standard Specifications, as well as the Greenbook, includes this requirement. Place a copy of the authorization in the project file, providing the address and after hours contact information of the person authorized to supervise.

16.3 Maintaining Project Records

An LPA must establish a separate record file for each federal-aid highway project. The project file must contain all data pertinent to the work and to the requirements of the specifications.

In general, project records must support the adequacy of the field supervision, inspection and testing; conformance to contract specifications; and payments to the contractor. Generally, whenever the LPA is unable to produce requested records, it shall be assumed by reviewing personnel the required actions were never performed. Organized project files can minimize these negative assumptions.

During the construction phase, Caltrans Construction Oversight Engineers periodically perform reviews and inspection of the LPA project files for compliance with federal and state requirements. Organization and content of the project file is one indicator of the effective and efficient management of the project by the RE. It also minimizes resources necessary for conducting process reviews.
Organization of Project Records
Each agency must develop or adopt a filing index to be used on all federal-aid projects administered by the agency off the SHS. An agency is only required to use the CT filing index for projects on the SHS. The files must be complete and well organized and should include, at a minimum, even on relatively simple projects, the topics indicated below.

Project Record Filing System - Locally Administered Federal-Aid Projects
1. Award Package
 a. Exhibit 15-A: Local Agency Construction Contract Administration Checklist
 b. Exhibit 15-B: Resident Engineer’s Construction Contract Administration Checklist
 c. Exhibit 15-M: Detailed Estimate
 d. Exhibit 3-O: Sample Local Federal-Aid Project Finance Letter
2. Project Personnel
 a. LPA Project Personnel Sheet (names, titles and phone number)
 b. LPA and Contractor’s Emergency Contact Information Sheet
 c. Contractor’s letter designating representative authorized to act for the contractor.
3. Correspondence
 a. To contractor
 b. From contractor
 c. General
4. Exhibit 16-A: Weekly Statement of Working Days
5. Quality Assurance:
 a. Copy of Quality Assurance Plan
 b. Independent Assurance
 i. Exhibit 16-D: Certificate of Proficiency
 ii. Certification of Accreditation of Testing Lab (TL-0113)
 iii. Equipment Calibration Verifications (Nuclear Gauge)
 c. Exhibit 16-I: Notice of Material to be Used (Form CEM-3101)
 d. Acceptance Testing Results and Initial Tests (Make a Category 6d for each material such as, 6d1.i, Cl 2 Base Test Summary Log, 6d2.ii Cl 2 Base Test Results- 6d2.i AC Test Results Log etc.. Include items below for each):
 i. Test Result Summary Log
ii. Test Results

e. Exhibit 16-T: Materials Typically Accepted by Certificate of Compliance

f. Exhibit 16-K: Report of Inspection of Material (Form MR-0029)

g. Buy America Certifications

h. Exhibit 17-G: Corroboration Report

6. Engineer’s Daily Reports

a. Resident Engineer’s Daily Report (Exhibit 16-C, or similar)

b. Assistant Engineer’s Daily Report (Exhibit 16-C, or similar)

c. Structures Engineer

7. Photographs

8. Contract Item Pay Quantity Documents

9. Exhibit 16-Y: Monthly Progress Payment Item Quantity Calculation Sheet, or similar

10. Change Orders (CO)

a. CO 1

i. Approved CO or equivalent (agencies may use their own form or use State form CEM-4900)

ii. CO Memorandum/Transmittal Letter or equivalent (agencies may use their own form or use State form CEM-4903)

iii. Written Prior Approval to Proceed

iv. Independent Supporting Force Account Cost Calculations (if Agreed Price)

v. Justification of time extension

vi. Extra Work Reports

b. CO 2 etc.

11. Progress Pay Estimates and Status of Funds

12. Labor Compliance and Equal Employment Opportunity (EEO) records

a. Certified Payrolls

b. Exhibit 16-B: Subcontracting Request

c. Photo Documentation of all required posters:
 www.fhwa.dot.gov/programadmin/contracts/poster.cfm

d. Labor Compliance Interviews
13. Disadvantaged Business Enterprise (DBE) Records
 a. Exhibit 15-G: Construction Contract DBE Information
 b. Exhibit 15-H: DBE Information - Good Faith Efforts
 c. Exhibit 16-Z1: Monthly DBE Trucking Verification
 d. DBE Substitution Supporting Documentation (if applicable)
 e. Exhibit 17-F: Final Report –Utilization of DBE and First –Tier Subcontractor

Other sections of this chapter explain the content of the above listed file categories.

A large and complex project usually requires a more detailed record-keeping system. The record-keeping system described in Caltrans Construction Manual, Section 5-102, Organization of Project Documents, is suggested for large projects.

Availability of Records for Review or Audit

The record retention period for the non-Federal entities for financial purposes is 3 years and begins when the final voucher is submitted in FMIS and required documentation is submitted to FHWA per the stewardship and oversight agreement. The files must be available at a single location for these reviews and audits. Use of a uniform project record-keeping system, together with diligent maintenance of the system, greatly facilitates a process review and minimizes negative findings. Good records of all construction activities clearly demonstrate to those concerned that project supervision and control were attained on the project.

16.4 PRE-CONSTRUCTION CONFERENCE AND PARTNERING

Pre-Construction Conference

For all construction projects, the LPA must schedule a pre-construction conference with the contractor.

Required Attendees:

- LPA Representative
- Resident Engineer (if this is not the same person as above)
- Contractor

Possible/Recommended Attendees:

- LPA Labor Compliance Officer
- LPA Safety Officer
- Other Affected Agencies (Fish and Wildlife, Parks and Rec, etc.)
- Emergency Services (Fire, Police, Ambulance, etc.)
- Public Utilities (if relocation or temporary shut downs are required)
- FHWA Project Oversight Manager
EXHIBIT 7
Appendix H - Example of a Log Summary Sheet

Subgrade Materials

<table>
<thead>
<tr>
<th>Date</th>
<th>CT</th>
<th>Station</th>
<th>Elevation</th>
<th>Test Results</th>
<th>Minimum Spec.</th>
<th>Passed or Failed</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/15/07</td>
<td>231</td>
<td>1+00 (30' L)</td>
<td>99.00</td>
<td>93</td>
<td>90 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>5/16/07</td>
<td>231</td>
<td>1+50 (20' R)</td>
<td>100.50</td>
<td>94</td>
<td>90 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>5/17/07</td>
<td>231</td>
<td>2+25 (25' R)</td>
<td>101.00</td>
<td>96</td>
<td>90 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>5/18/07</td>
<td>231</td>
<td>1+50 (30' L)</td>
<td>101.50</td>
<td>95</td>
<td>95 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>5/19/07</td>
<td>231</td>
<td>2+50 (20' L)</td>
<td>102.00</td>
<td>92*</td>
<td>95 or greater</td>
<td>Failed</td>
<td>See Note 1</td>
</tr>
<tr>
<td>5/19/07</td>
<td>231</td>
<td>2+50 (20' R)</td>
<td>102.00</td>
<td>95</td>
<td>95 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CT 231 = Compaction (Nuclear Gage)

* Note 1: The Contractor used a water tank to dampen the soil surface at the failed subgrade location. Using a sheep's foot compactor, he reworked the subgrade (making at least 10 passes) from Station 2+00 to Station 3+00. After approximately 30 minutes, another compaction test was taken. This time the relative compaction was 95.

Aggregates and Base Materials

<table>
<thead>
<tr>
<th>Date</th>
<th>CT</th>
<th>Station</th>
<th>Elevation</th>
<th>Test Results</th>
<th>Minimum Spec.</th>
<th>Passed or Failed</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/20/07</td>
<td>202</td>
<td>1+00 (10' R)</td>
<td>102.50</td>
<td>See data sheet</td>
<td>See data sheet</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/20/07</td>
<td>202</td>
<td>2+00 (20' L)</td>
<td>102.50</td>
<td>See data sheet</td>
<td>See data sheet</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/22/07</td>
<td>217</td>
<td>1+00 (10' R)</td>
<td>102.50</td>
<td>75</td>
<td>25 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/22/07</td>
<td>217</td>
<td>2+00 (20' L)</td>
<td>102.50</td>
<td>83</td>
<td>25 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/20/07</td>
<td>227</td>
<td>1+00 (20' R)</td>
<td>102.50</td>
<td>86</td>
<td>71 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/20/07</td>
<td>227</td>
<td>1+50 (20' L)</td>
<td>102.50</td>
<td>85</td>
<td>71 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/24/07</td>
<td>231</td>
<td>2+00 (20' R)</td>
<td>102.50</td>
<td>98</td>
<td>95 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>6/24/07</td>
<td>231</td>
<td>2+50 (20' L)</td>
<td>102.50</td>
<td>97</td>
<td>95 or greater</td>
<td>Passed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CT 202 = Sieve Analysis, CT 217 = Sand Equivalent, CT 227 = Cleanliness Value, CT 231 = Compaction (Nuclear Gage)
Appendix H (continued)

Hot Mix Asphalt

<table>
<thead>
<tr>
<th>Date</th>
<th>CT</th>
<th>Station</th>
<th>Elevation</th>
<th>Test Results</th>
<th>Minimum Spec.</th>
<th>Passed or Failed</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/10/07</td>
<td>339</td>
<td>1+ 00</td>
<td>103.00</td>
<td>0.08 gal/sq yd</td>
<td>0.05 - 0.10 gal/sq yd</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>7/10/07</td>
<td>366</td>
<td>2+ 00</td>
<td>103.00</td>
<td>32</td>
<td>>23</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>7/10/07</td>
<td>366</td>
<td>1+ 00</td>
<td>103.00</td>
<td>41</td>
<td>>23</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>7/10/07</td>
<td>375</td>
<td>2+ 00</td>
<td>103.00</td>
<td>94</td>
<td>RC = 93 to 97</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>7/15/07</td>
<td>375</td>
<td>1+ 00</td>
<td>103.00</td>
<td>96</td>
<td>RC = 93 to 97</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>7/15/07</td>
<td>375</td>
<td>1+ 50</td>
<td>103.00</td>
<td>95</td>
<td>RC = 93 to 97</td>
<td>Passed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CT 339 = Distributor Spread Rate, CT 366 = Stabilometer Value
CT 375 = In-Place Density & Relative Compaction

Portland Cement Concrete

<table>
<thead>
<tr>
<th>Date</th>
<th>CT</th>
<th>Station</th>
<th>Elevation</th>
<th>Test Results</th>
<th>Minimum Spec.</th>
<th>Passed or Failed</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/25/07</td>
<td>504</td>
<td>10 + 50</td>
<td>102.50</td>
<td>6.5%</td>
<td>>6.0%</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>9/25/07</td>
<td>533</td>
<td>12 + 50</td>
<td>102.50</td>
<td>1.5”</td>
<td><2”</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>9/25/07</td>
<td>518</td>
<td>11 + 50</td>
<td>102.50</td>
<td>151 lb/cu ft</td>
<td>> 145 lb/cu ft</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>9/25/07</td>
<td>521</td>
<td>10 + 50</td>
<td>102.50</td>
<td>28 day = 4200 psi</td>
<td>>3800 psi</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>9/28/07</td>
<td>521</td>
<td>11 + 50</td>
<td>102.50</td>
<td>28 day = 4290 psi</td>
<td>>3800 psi</td>
<td>Passed</td>
<td>N/A</td>
</tr>
<tr>
<td>9/30/07</td>
<td>521</td>
<td>12 + 50</td>
<td>102.50</td>
<td>28 day = 4160 psi</td>
<td>>3800 psi</td>
<td>Passed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CT 504 = Air Content, CT 518 = Unit Weight, CT 521 = Compressive Strength,
CT 533 = Ball Penetration

35